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INTRODUCTION

The damping of a plane shock wave was treated in [1, 2] in the one-dimensional case and in the hydro-
dynamic approximation. The formula for damping of a shock wave was obtained in the form of a finite-dif-
ference equation in [1], based on the hypothesis that energy decays in the zone of the shock wave. Although
this hypothesis does not contradict the conditions of dynamic consistency at the shock front it has no strict
justification. However, the damping formula is in satisfactory agreement with known experimental data.
Formulas for the shock front and the form of the momentum as functions of time are obtained in [2} on the
basis of Friedrichs method for the case of a striker and a barrier of the same material, A simpler method
is given below for determining the position of the shock front as a function of time,

We shall use the same assumptions as in [2] to treat the propagation of a shock wave created in an ob-
stacle by the blow from a plate., We shall make the approximation of assuming that the compression shock is
an isentropic process, We shall treat the wave propagation in the hydrodynamic approximation without taking
rigidity, viscosity, and thermal conductivity into account. Moreover, for simplicity we shall assume initially
that the striker and object struck are made of the same material. The equation of state of this material can
be represented by the equation [3]

02
p=p—°,,3(0"—1), (1)

where p is the pressure, p is the density, c is the velocity of sound, n is a constant, and o= p/p, is the com-
pression. The subscript 0 indicates that the quantity refers to the initial state., We shall treat the process
in the coordinates of space x and time t adopted in gasdynamics. Let the moment of collision coincide with
the coordinate origin.

When the plate collides with the obstacle, shock waves propagate in both directions from the contact
boundary (Fig. 1). A centered rarefaction wave propagates to the right from the point (xp, ty) where the shock
wave exits to the rear free surface of the striker plate. Let 0 and 1 denote the state of the material in front
and to the rear of the shock wave, respectively. Let 2 denote the state of the material after the rarefaction
wave has propagated through it. We introduce the following additional symbols: D, the velocity of the shock
wave; u, the mass velocity. The leading characteristic of the rarefaction wave overtakes the shock front at
the point (xp,, tm). For the wave propagating to the right the Riemann invariant is constant I_ = const [4]. In
this case

c = [(n — 1)21u + c,.
The equation of the c, characteristic is
(x — z)/(t — tp) = ¢y + l(n -~ 1)i2]u. (2)

The equation for the trajectory of the shock front up to the point (x,, tm) is the straight line (x/t) =D=
const, and after this point it is

dz/dt = ¢, + Bu. (3)

Here use has been made of the well-known relation between the wave velocity D and the mass velocity u, while
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cy and B are constant coefficients, The quantity c, has the physical meaning of being the initial velocity of
sound in the absence of phase transition,

It can be shown that in the present approximation of an isentropic shock wave Eg. (3)follows from Eq. (1)
Then
B =4 1)/4

The fact that the linear relationship (D—u) exists in practice for condensed bodies confirms the validity of the
assumption that shock-wave compression in condensed bodies is isentropic. A departure from linearity in
the relation (D—u) for strong waves is a result of the fact that strong shock waves are not isentropic. From
Eq. (2) we have

cu = 12/(n + D[z — z,)/(E — ta) — eol. . ]
Substitution of Eq. (4) in Eq. (3) gives the relation
dridt = A -+ Bz — x,)I(t — tg),
where
= 2Bin + 1) =1/2, 4 = (1 — B)oy = /2
The solution of this differential equation has the form
(@ —z ) (t—tp)=coil =1 —(zm — Za)/oo(tm — £2) H(tm —2.)/(t—2n) 2} (5)

Equation (5) describes the trajectory of the shock front in the attenuation zone of the rarefaction wave
after the point (xm, tm). In the range 0 SXSX the equation for the trajectory of the shock front is the straight
line x =Dt, and the mass velocity behind the wave front remains constant: u=u;. The magnitude of the mass
velocity at the front in the attenuation zone of the rarefaction wave can be obtained from Eqs, (4}, (5) as a func-
tion of time:

o= uyl{ty, — £/ — ;)] 6)
Thus, the mass velocity at the shock front varies in inverse proportionality to the square root of time,

i.e., it obeys Landau's law [5] for weak waves,

If the striker and the obstacle are made from different materials, the centered rarefaction wave from
the rear surface of the striker is refracted and passes into the obstacle. In this case a new pole (x}, th) can
be found for the refracted rarefaction wave. If the coordinates of this pole are substituted into Egs. (5), (6),
these equations are then valid for the case where different materials collide.

. The experimental results of [6] allow us to verify the validity of different damping formulas, Calculated
results and experimental data [6] are compared in Fig. 2. Experimental values of the mass velocity up are
given on the abscissa, and the calculated values u, are given on the ordinate.
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The solid line corresponds to experiment. Calculated values obtained in {1], on the hypothesis that the
energy decays in the shock-wave zone, are denoted by the number 1, results determined from Eq. (6) are
denoted by 2, while 3 denotes values of the mass velocity determined from a formula which, in our symbols,
gives the mass velocity as an explicit function of time obtained in [2]:

U = cl20n 1)1 + EQ(E — t)(Em — L)) + 1} — ey, . ("
where

E = 2 + D)/[(uy + e)leg — 1] — 1.

The following values of n, determined from experimental pressure and compression, were taken when
making calculations from Eq. (7): 4.5 for Al, 5.2 for Pb, 5.05 for Cu, and 5.86 for Fe, Values of the quan-
tities t, x, uy, ¢; were taken from [6], while values of ¢, for four metals were taken from [7].

It is clear from Fig. 2 that all three damping formulas give values of the mass velocity close to the ex-
perimental values., Kozlov [1] noted that the discrepancy between experimental values and those calculated
from his formula was less than 13.5%. The discrepancy between experimental results and those calculated
from Eq. (7) reaches 16.2%. Calculations from Eq. (6) give a discrepancy with experiment of less than 10%,
and, in the majority of cases, less than 3-4%,

Thus, Eq. (6) gives a somewhat better agreement with experiment.
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